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Abstract
Intermolecular forces between two interacting nanostructures can be obtained
by either summing over all the individual atomic interactions or by using
a continuum or continuous approach, where the number of atoms situated
at discrete locations is averaged over the surface of each molecule. This
paper aims to undertake a limited comparison of the continuum approach, the
discrete atom–atom formulation and a hybrid discrete-continuum formulation
for a range of molecular interactions involving a carbon nanotube, including
interactions with another carbon nanotube and the fullerenes C60, C70 and C80.
In the hybrid approach only one of the interacting molecules is discretized
and the other is considered to be continuous. The hybrid discrete-continuum
formulation would enable non-regular shaped molecules to be described,
particularly useful for drug delivery systems which employ carbon nanotubes
as carriers. The present investigation is important to obtain a rough estimate
of the anticipated percentage errors which may occur between the various
approaches in any specific application. Although our investigation is by no
means comprehensive, overall we show that typically the interaction energies
for these three approaches differ on average by at most 10% and the forces
by 5%, with the exception of the C80 fullerene. For the C80 fullerene, while
the intermolecular forces and the suction energies are in reasonable overall
agreement, the point-wise energies can be significantly different. This may
in part be due to differences in modelling the geometry of the C80 fullerene,
but also the suction energies involve integrals of the energy, and therefore any
errors or discrepancies in the point-wise energy tend to be smoothed out to give
reasonable overall agreement for the former quantities.
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1. Introduction

Given the size and spatial distribution of atoms on a molecule the determination of the
intermolecular forces between two interacting molecules is difficult to obtain analytically.
The standard approach is to smear the atoms over the surface of each molecule by dividing
the number of atoms by the surface area of each molecule, which is usually referred to as the
continuum or continuous approximation. The question arises as to how the latter approach
compares to the corresponding result obtained from a discrete atom–atom formulation and a
hybrid discrete-continuum approach. The continuum approach is an important approximation
and the purpose here is to investigate the discrepancies between the three techniques and
if possible to arrive at a working estimate of the likely percentage difference that might be
anticipated in any specific application.

Girifalco et al [1] state that

“from a physical point of view the discrete atom–atom model is not necessarily
preferable to the continuum model. The discrete model assumes that each atom is the
centre of a spherically symmetric electron distribution while the continuum model
assumes that the electron distribution is uniform over the surface. Both of these
assumptions are incorrect and a case can even be made that the continuum model is
closer to reality than a set of discrete Lennard–Jones centres.”

One such example is a C60 fullerene, in which the molecule rotates freely at high
temperatures so that the continuum distribution averages out the effect. Qian et al [2] suggest
that the continuum approach is more accurate for the case where the

“C nuclei do not lie exactly in the centre of the electron distribution, as is the case
for carbon nanotubes.”

However, one of the constraints of the continuum approach is that the shape of the molecule
must be reasonably well defined so as to evaluate the integral analytically [2] and therefore
the continuum approach is mostly applicable to highly symmetrical structures. Hodak and
Girifalco [3] point out that the continuum approach ignores the effect of chirality and that
nanotubes are only characterized by their diameters. The effect of chirality may be incorporated
into other more sophisticated continuum mechanical theories, usually indirectly through the
elastic moduli, such as in [4–6]. The continuum or continuous approximation has been
successfully applied to a number of systems, including C60-nanotube [1, 3, 7, 8], C60–C60

[9] and nanotube–nanotube [1, 10, 11]. For the graphite-based and C60-based potentials,
Girifalco et al [1] state that calculations using the continuum and discrete approximations
give similar results, such that the difference between equilibrium distances for the atom–atom
interactions is less than 2%. Since Girifalco et al [1] provide very few details, the question
arises as to the agreement for other fundamental quantities such as energy and force.

The aim of this paper is to further investigate such discrepancies and attempt to determine
an average percentage difference for the interaction energies and forces for a range of geometric
nanostructures. We compare the continuum approximation to both a discrete atom–atom
formulation and a hybrid discrete-continuum formulation. In the latter approach one molecule
is modelled discretely and the other is modelled using the continuum approximation. Motivated
by the recent proposed use of nanotechnology in drug delivery, the hybrid method may be
particularly applicable to non-regular shaped molecules, such as a particular drug, which might
be modelled by the discrete approach, while the drug carrier as continuous. The interaction
of the discrete modelled molecule with a continuum modelled carbon nanostructure, such as a
carbon nanotube, is evaluated using the Lennard–Jones potential, which is the widely adopted
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form for the interatomic potential of non-bonded and non-polar molecules. We assume that for
the continuum approximation there is a uniform surface density of atoms, which is obtained
simply by dividing the number of atoms by the surface area of the nanostructure. We show
that typically the interaction energies for these three approaches differ on average by at most
10% while the forces differ by at most 5%, with the exception of the C80 fullerene.

In section 2, we outline the general approach together with the Lennard–Jones interatomic
potential which is used in the three methods. Following this we model a single atom interacting
with a carbon nanotube, and the nanotube is modelled both by continuum and discrete
formulations for comparison. In the final sections of the paper we compare a number of
particular systems arising from previous research including the interaction of C60-nanotube
[7], C70-nanotube [12], C80-nanotube [12] and nanotube–nanotube [11], and we use the hybrid
discrete-continuum approach described in section 2. Certain mathematical details relating to
the evaluation of integrals in terms of various hypergeometric functions and elliptic integrals
are presented in appendices A and B.

2. Atomic interaction potentials

The non-bonded interaction energy, using the discrete formulation, is obtained by a summation
of the interaction energy between each atom pair, thus

E =
∑

i

∑
j

υ(ρij ), (1)

where υ(ρij ) is the potential function for atoms i and j located a distance ρij apart on two
distinct molecular structures. We assume that each atom on the two molecules is well defined
by a coordinate position. Following conventional practice, in the continuum approximation
the atoms are assumed to be uniformly distributed over the surface of the molecule, and the
double summation in (1) is therefore replaced by a double integral over the surface of each
molecule, thus

E = η1η2

∫ ∫
υ(ρ) d�1 d�2, (2)

where η1 and η2 represent the mean surface density of the carbon atoms on the two interacting
molecules, and now ρ represents the distance between two typical surface elements d�1

and d�2 located on the two interacting molecules. In this paper, we also examine a hybrid
discrete-continuum model formulation, which is represented by elements of both (1) and (2),
thus

E =
∑

i

η1

∫
υ(ρi) d�1, (3)

which can be considered equivalent to either a double summation or a double integral. Table 1
provides the numerical values for the various constants used throughout the paper and we
note that the mean surface density of the nanotube is always assumed to be equal to that of
graphene. We comment that with E representing the total interaction energy, the various force
components are determined by the negative gradient of E.

There are two major functional forms used in empirical models: the inverse power model
and the Morse function model [8, 13]. In this investigation the so-called Lennard–Jones
inverse power model is adopted and is given by

ν(ρ) = 4ε

[
−

(
σ

ρ

)6

+

(
σ

ρ

)12
]

,
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Table 1. Numerical values of constants.

Radius of C60 3.55 Å
Radiusa of (10, 10) 6.78 Å
Radiusa of (16, 16) 10.856 Å
Radiusa of (20, 20) 13.56 Å
Carbon–carbon bond length σ = 1.42 Å

Mean surface density of graphene ηg = 4
√

3/(9σ 2) atoms Å−2

a [14, p 885].

Table 2. Lennard–Jones constants for graphitic systemsa.

A (eV×Å6) B (eV×Å12) Model used

C–Cb 19.97 34.81×103 C–CNT
Graphene–graphene 15.2 24.1×103 CNT–CNT
C60–graphene 17.4 29.0×103 C60–CNT, C80–CNT

a [1].
b [9].

which is believed to apply to non-bonded and non-polar atomic interactions, where ε is the well
depth, σ is the equilibrium distance and ρ is the distance between two atoms. Alternatively
this may be written as

ν(ρ) = −Aρ−6 + Bρ−12, (4)

where A and B are referred to as the attractive and repulsive constants, respectively. The
equilibrium distance, ρ0 between an atom pair is given by ρ0 = (2B/A)1/6. Table 2 outlines
numerical values of the Lennard–Jones constants for the graphitic systems studied in this
paper.

3. Carbon atom and a carbon nanotube

In this section, we evaluate the interaction between a single carbon atom and a carbon nanotube,
first using the continuum approach followed by the discrete atom–atom formulation in which
the carbon nanotube surface is completely discretized. With a rectangular Cartesian coordinate
system at the tube centre, the distance between a single carbon atom and a typical atom of the
carbon nanotube at (a cos θ, a sin θ, z) is ρ2 = a2 + (z − Z)2, where Z is the distance between
the centre of the carbon nanotube and a single carbon atom assumed located on the axis of the
nanotube and a is the radius of the carbon nanotube, and we use a (10, 10) configuration as
given in table 1. Following Cox et al [7] the interaction energy between a single carbon atom
and a carbon nanotube in the continuum approach is given by

E = 2πηa(−AI6 + BI12),

where In is equal to

In = 1

a2n−1

[
L − Z

[a2 + (L − Z)2]1/2
F

(
3

2
− n,

1

2
; 3

2
; (L − Z)2

a2 + (L − Z)2

)

+
L + Z

[a2 + (L + Z)2]1/2
F

(
3

2
− n,

1

2
; 3

2
; (L + Z)2

a2 + (L + Z)2

)]
,

and F(a, b; c; z) is the ordinary hypergeometric function [15], L is the half-length of the
nanotube, and η is taken to be the surface density of graphene as given in table 1. In this paper,
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Figure 1. General offset atom and a carbon nanotube.

we require a finite length of nanotube in order to discretize the nanotube in the subsequent
discrete atom–atom formulation. Consequently the integrals In have a different derivation in
this paper from similar results in [7] and accordingly the details for the derivation required
here are given in appendix A.

The interaction energy between a single carbon atom and the carbon nanotube in its
discretized form is given by

E =
Nc∑

γ=1

(−Aρ−3
γ + Bρ−6

γ

)
,

where Nc is the total number of atoms on the carbon nanotube and ργ is the distance between
the single carbon atom and a typical atom on the surface of the nanotube. The position of each
atom on the carbon nanotube is found using simple trigonometry and application of the unit
cell length for a carbon nanotube [14]. Using the algebraic package MAPLE we may plot the
interaction energies corresponding to the two models. The carbon nanotube is taken to be 246 Å
in length, which is equivalent to 4000 atoms in the discretized model. The attractive and
repulsive constants, A and B, respectively are taken to be those of C–C, with values as given
in table 2. We find that the overall trends agree for the two cases and that there is a 0.08%
discrepancy between the minimum energies and 1.7% between the peak forces.

4. Further examples

In this section, we evaluate the hybrid discrete-continuum formulation in which one interacting
body is discretized. We compare this to previously evaluated example problems for which
the interaction potentials have been previously evaluated in the literature using the continuum
approach. In the modelling of drug delivery systems, which employ carbon nanotubes as
carriers, we would like to employ both discrete and continuum approaches to approximate
the interaction energy for a drug molecule, which comprises various components including a
number of isolated atoms. With this in mind the hybrid discrete-continuum approach enables
the modelling of non-regular shaped molecules, such as drugs, and incorporates the time-
saving advantage of leaving the carbon nanotube continuous. The aim here is to attempt to
formulate a working estimate of the anticipated relative errors involved using this approach.

A general method is developed that can be used to model any shaped molecule. We define
an offset atom at a distance z from the end of the carbon nanotube and at a radius ε from the axis
of the carbon nanotube. It is assumed that the centre of mass of the entering molecule is located
on the axis of the nanotube. With a cylindrical polar coordinate system (r, θ, z) at the tube
centre, the offset atom is located at A(ε, 0, z) and a typical point on the nanotube is defined
by B(a cos θ, a sin θ, ξ) and we are assuming a semi-infinite tube, illustrated in figure 1.
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The distance between the offset atom A and a typical point on the nanotube B is given by

ρ2 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

= (a + ε)2 − 4aε cos2(θ/2) + (ξ − z)2. (5)

Substituting (5) into (3) and (4), we obtain the energy of one offset atom interacting with the
carbon nanotube, thus

E = ηa

Na∑
γ=1

∫ ∞

0

∫ π

−π

( −A

[(a + εγ )2 + (ξ − zγ )2 − 4aεγ cos2(θ/2)]3

+
B

[(a + εγ )2 + (ξ − zγ )2 − 4aεγ cos2(θ/2)]6

)
dθ dξ,

where η is the surface density of carbon atoms on the carbon nanotube as given in table 1, a is
the radius of the nanotube and Na is the number of atoms in the molecule. Given the symmetry
of the problem we are principally only interested in the axial force, therefore on noting that
F = −dE/dz and evaluating the θ integration we obtain an interaction force given by

F = 2πηa

Na∑
γ=1

[
A

α6
1

F
(
3, 1/2; 1; 1 − α2

2

/
α2

1

) − B

α12
1

F
(
6, 1/2; 1; 1 − α2

2

/
α2

1

)]
, (6)

where α2
1 = (a + εγ )2 + (ξ − zγ )2, α2

2 = (a − εγ )2 + (ξ − zγ )2 and details are given in
appendix B. Note that again F(a, b; c; x) denotes the ordinary hypergeometric function [15].
The interaction energy may be obtained by further integration with respect to ξ , thus

E = 2πηa

Na∑
γ=1

[
−A

(
1

4
J3,3 +

3

8
(J1,5 + J5,1)

)

+ B

(
63

256
(J1,11 + J11,1) +

35

256
(J3,9 + J9,3) +

30

256
(J5,7 + J7,5)

)]
. (7)

In terms of Appell’s hypergeometric functions [16], Jm,n is given by

Jm,n =
[
(a + εγ )2 + z2

γ

]−M

2

(M)

(N)
F1

(
M; n

2
,

1

2
;N; (1 − v2)t1, t1

)
,

where M = (m + n − 1)/2, N = (m + n + 1)/2, v = (a − εγ )/(a + εγ ), t1 = (a + εγ )2
/[

(a +
εγ )2 + z2

γ

]
, and F1(a; b, b1; c; x, y) is an Appell hypergeometric function. In terms of elliptic

functions [17] we have

Ji,j = g

[
1

α2(i+j)

∫ tn−1∞

0
sn2iu sd2ju du +

1

α2iβ2j

∫ tn−1(zγ /β)

0
c d2iu cn2ju du

]
,

where i = (m − 1)/2, j = (n − 1)/2, α = a + εγ , β = a − εγ , g = 1/α, and
tn−1(y, k) = sn−1(

√
y2/(1 + y2), k). We note that this is valid when zγ � 0, and for the

case when zγ � 0 we have a subtraction rather than an addition of the two terms. Further
details for both techniques are given in appendix B. We may use these offset atom formulae to
determine both the force and energy for any shaped molecule, such as those presented in the
following sub-sections.

4.1. Interaction of C60 fullerene with a carbon nanotube

Cox et al [7] and others [1, 3, 8] study the problem of the interaction of a carbon nanotube
and a C60 fullerene. Here we compare the hybrid discrete-continuous model in which the C60
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z (Å)

Force
(eV/Å)

Figure 2. C60 force (a = 6.4 Å) for both hybrid discrete/continous (dash) and continuous (solid).

molecule is completely discretized, with that of the continuum approach as described by Cox
et al [7].

We assume that the C60 fullerene is located on the central axis of the nanotube and there is
no rotation. We note that Cox et al [7] find that for the (10, 10) configuration the buckyball’s
minimum energy position is on the central axis and as a result this is assumed here. Each
individual atom in the fullerene (60 in total) is defined in terms of the Cartesian coordinates
(x1, x2, x3), which may be transformed into an ε and z position, thus

ε =
√

x2
1 + x2

2 , z = Z + x3,

where Z is the distance between the centre of mass of the fullerene and the end of the carbon
nanotube, since we assume a semi-infinite tube. The radius of the C60 fullerene is as given in
table 1.

The force and energy of each atom in the fullerene are then evaluated by direct substitution
of the atom position into the corresponding formulae (6) and (7), respectively. The resulting
force and energy of the entire C60 fullerene with the carbon nanotube is then a summation
over each atom, thus the total energy is given by E = ∑Na

γ=1 E(x1, x2, x3)γ , where there are
Na atoms in the molecule, in the case of the C60 fullerene Na = 60. Again using the algebraic
package MAPLE we obtain plots for the force and energy.

We observe that the energy has the same trend in both the continuum and hybrid discrete-
continuum methods. In fact, the two techniques provide identical plots with the exception
of the maximum peak value which differ by at most 7%. The overall trends for the forces
are also consistent between the two methods. However, there are discrepancies between the
maximum and minimum peak values, illustrated in figure 2 for a nanotube radius a = 6.4 Å
which represents the worst case. The average percentage difference of the two approaches for
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Figure 3. C70 energy for hybrid discrete-continuous (dash) and continuous (solid).

the three different carbon nanotube radii are 3.9% when a = 6.4 Å, 1.3% when a = 6.509 Å
and 0.45% when a = 6.784 Å. We observe that for both the energy and force, as the nanotube
radius decreases the average percentage difference increases.

4.2. Interaction of C70 and C80 fullerenes with a carbon nanotube

In this section, we examine the C70 and C80 fullerenes, comparing the hybrid discrete-
continuum formulation to the continuum approach as presented by Cox et al [12]. It
is important to note that the two approaches represent the fullerenes in a different way
geometrically and therefore care must be taken when comparing the two results. For the
case of the hybrid discrete-continuum formulation atom positions are defined by considering
the C70 and C80 fullerenes as a cylinder of length 1.23 Å and 2.46 Å, respectively, capped at
either end by a semi-spherical buckyball or C60 fullerene. Again, each atom has an ε and z

position and the total force and energy are a sum of these individual results. The fullerenes
presented continuously in Cox et al [12] are represented by perfect spheroidal surfaces and
therefore are somewhat different in geometry to those fullerenes presented here. The C70

fullerene is closest in geometric shape to the spheroid and subsequently the results are closer
for the C70.

4.2.1. C70 fullerene. The C70 fullerene can be thought of as one row of carbon atoms centred
on a cylindrical tube between two semi-spherical buckyball caps. As shown in figure 3 the
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Figure 4. C70 force for hybrid discrete-continuous (dash) and continuous (solid).

overall trend is consistent between the two models but the magnitudes are somewhat different.
For example for a nanotube radius a = 6.3 Å there is a 9.4% difference at the peak value.
A comparison of the forces between the two models is shown in figure 4. Again the overall
trend is consistent, the average percentage difference varies from 3% for a = 6.55 Å to 3.5%
for a = 6.3 Å. Again, for both the energy and force, as the nanotube radius a decreases the
average percentage difference increases.

4.2.2. C80 fullerene. The C80 fullerene can be thought of as one unit cell of a carbon
nanotube, consisting of 20 carbon atoms and 10 hexagons, between two semi-spherical
buckyball caps. Here the difference is more obvious between the two models, overall
the trend is similar but there is a shift in the z position between the two models and the
magnitudes are quite different, as shown in figure 5. For example for a = 6.3 Å the
difference between peak values is 55%, again this difference decreases as the nanotube radius
a increases, as shown in figure 5. This significant difference may be partly accounted for by
the varying approach, in the continuum model the C80 is considered as a perfect spheroid,
whereas here C80 is defined in the shape of a capsule. Figure 6 illustrates the forces for
the two approaches. Here the trend differs slightly but the same acceptance conditions are
predicted. The average percentage difference varies from 11.6% for a = 6.54 Å and 28.6% for
a = 6.3 Å.
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Figure 5. C80 energy for hybrid discrete-continuous (dash) and continuous (solid).

4.3. Suction energy

The suction energy is defined by Cox et al [18] as the energy that acts on the entering molecule
so as to pull it into the interior of the carbon nanotube. It is defined as the integral∫ ∞

−∞
F dz = −

∫ ∞

−∞

dE

dz
dz = E(−∞) − E(∞), (8)

which is the work done that is transformed into kinetic energy. We have evaluated the suction
energy to further investigate whether the hybrid discrete-continuous formulation predicts the
same phenomenon as the continuous models. The comparison of suction energies is illustrated
in figure 7 for the C60, C70 and C80 fullerenes. Despite their obvious differences in magnitude
for the point-wise energies the three fullerenes provide almost identical suction energies.
In fact, the predicted nanotube radii that are energetically favourable to accept a particular
fullerene are within 1% for the two approaches. Figure 5 illustrates that the discrepancy in
approach is worst case for small radii. Figure 7 illustrates that at this small radii the curve has
a steep gradient and as such a small change in radius may have a significant effect in energy.
More specifically, from (8) the discrepancy in suction energy is influenced by the discrepancy
in potential energy at z = −∞ and z = ∞ for the two approaches. As shown in figure 5, the
error at −∞ is negligible but at ∞ is more significant, therefore the suction energy provides an
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Figure 6. C80 force for hybrid discrete-continuous (dash) and continuous (solid).

Table 3. Double-walled carbon nanotube, hybrid discrete-continuous versus continuous.

Energy (%) Force (%)

(10, 10) and (16, 16) 0.93 0.12
(10, 10) and (20, 20) 0.9 0.01

averaged result and consequently provides a smaller discrepancy between the two approaches.
Overall the two techniques provide very similar results.

4.4. Interaction of double-walled carbon nanotubes

Baowan and Hill [11] and others [1, 10] study the interaction of double-walled carbon
nanotubes. Here we compare the continuum model of Baowan and Hill [11] to our hybrid
discrete-continuous method in which the inner tube is discretized and the outer tube remains
continuous. Note that the (10, 10) nanotube is always the discretized tube, and is equivalent
to 4000 atoms. Again we use the offset atom formulae given by (6) and (7) for the force
and energy, respectively and sum over all atoms. The general trend for both the force and
energy curves are consistent between the two methods. As shown in table 3, where two
configurations of double-walled nanotubes are investigated, the peak values differ by less
than 1%.
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Figure 7. Suction energy for hybrid discrete-continuous (dash) and continuous (solid).

5. Conclusions

In order to calculate the atomic interaction energies for two interacting nanostructures, we can
either sum over all the individual atomic interactions, or we can adopt a continuum approach
using a smeared atomic density, or we can employ a hybrid discrete-continuum approach
which utilizes both procedures. The latter approach might be especially useful for proposed
drug delivery systems which use carbon nanotubes as carriers and there is need to determine
whether or not a specific molecule is energetically favourable to be accepted into a specific
carbon nanotube. The drug may be modelled by the discrete approach, or a combination of
both the discrete and continuous approaches if necessary, while the carbon nanotube carrier
would be modelled continuously.

In this paper, we find that the discrete atom–atom formulation has a similar trend and
is within 2% of the continuum approach. Similarly, we find that the continuum approach
and hybrid discrete-continuum approach are similar in both trend and magnitude. However,
geometry (even though symmetric) appears to have a significant effect in causing a discrepancy
between the two methods, in particular for the C70 and C80 fullerenes. However, although
there are discrepancies, the same physical phenomenon is still predicted by both approaches.
Typically the interaction energies for the three approaches differ by at most 10% and the forces
by 5%, with the exception of the C80 fullerene. For the C80 fullerene, while the intermolecular
forces and the suction energies are in reasonable overall agreement, the point-wise energies
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Table 4. Overview of differences for particular geometries.

Energy (%) Force (%)

Atom–nanotube 0.08 1.7
C60-nanotube <5 <4
C70-nanotube <9.4 3–3.5
C80-nanotube <55 11–28
Nanotube–nanotube <1 <1

can be significantly different. This may be because the suction energies involve integrals
of the energy, and therefore any errors or discrepancies in the point-wise energy tend to be
smoothed out to give reasonable overall agreement for the former quantities. The significant
discrepancy shown between the two approaches for the C80 fullerene may in part be due to the
difference in the modelling of the geometric shape. For this case the continuum model of the
C80 fullerene is represented as a perfect ellipsoid while in the hybrid model it is represented
as two caps and a cylinder. For both the energy and force for all fullerenes presented in this
paper, the average percentage difference increases as the carbon nanotube radius a decreases.
Table 4 provides an overview of the resulting differences between the various models studied
in this paper.

Acknowledgments

The authors are grateful to the Australian Research Council for support through the Discovery
Project Scheme and the University of Wollongong for a University Postgraduate Award. In
particular, JMH is grateful to the Australian Research Council for provision of an Australian
Professorial Fellowship. The authors especially wish to acknowledge their colleagues Barry
Cox, Grant Cox, Ngamta Thamwattana and Duangkamon Baowan for many helpful comments
and discussions.

Appendix A. Carbon atom and nanotube of finite length

The interaction energy is given by

E = η

∫ 2π

0

∫ L

−L

(−A

ρ6
+

B

ρ12

)
a dz dθ = 2πaη

∫ L

−L

(−A

ρ6
+

B

ρ12

)
dz,

where ρ2 = a2 + (z − Z)2. We then have the integral

In =
∫ L

−L

dz

[a2 + (z − Z)2]n
=

∫ ω2

−ω1

a1−2n sec2−2n ω dω,

where we have made the substitution z = Z + a tan ω,ω1 = tan−1[(L + Z)/a], ω2 =
tan−1[(L − Z)/a] and we are interested in the two values n = 3 and n = 6. On making
the further substitution t = tan ω we obtain

In = a1−2n

∫ t2

−t1

dt

(t2 + 1)n
= a1−2n

[ ∫ t2

0

dt

(t2 + 1)n
+

∫ t1

0

dt

(t2 + 1)n

]
,

where t1 = (L + Z)/a and t2 = (L − Z)/a. We now make the substitution

x = t (1 + t2)−1/2, t = x(1 − x2)−1/2, dt = dx(1 − x2)−3/2,
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and we use the transformation B(β, γ −β)F (α, β; γ ; z) = ∫ 1
0 tβ−1(1 − t)γ−β−1(1 − tz)−α dt

from Gradshteyn and Ryzhik [15, p 995] to obtain the result in terms of ordinary
hypergeometric functions, thus

In = a1−2n

[
L − Z

[a2 + (L − Z)2]1/2
F

(
3

2
− n,

1

2
; 3

2
; (L − Z)2

a2 + (L − Z)2

)

+
L + Z

[a2 + (L + Z)2]1/2
F

(
3

2
− n,

1

2
; 3

2
; (L + Z)2

a2 + (L + Z)2

)]
.

Appendix B. Offset atom interaction energy

B.1. Evaluation of θ integration

We have the integral

E = ηa
∑

γ

∫ ∞

0

∫ π

−π

( −A

[(a + εγ )2 + (ξ − zγ )2 − 4aεγ cos2(θ/2)]3

+
B

[(a + εγ )2 + (ξ − zγ )2 − 4aεγ cos2(θ/2)]6

)
dθ dξ,

and on letting φ = θ/2 we obtain the general θ integration

In = 2
∫ π/2

−π/2

dφ[
α2

1 +
(
α2

2 − α2
1

)
cos2 φ

]n ,

where α2
1 = (a + εγ )2 + (ξ − zγ )2, α2

2 = (a − εγ )2 + (ξ − zγ )2, α2
2 − α2

1 = −4aεγ and we are
interested in the values n = 3 and n = 6. Given the symmetry of the integral and making the
substitution t = cos2 φ we obtain

In = 4
∫ π/2

0

dφ[
α2

1 +
(
α2

2 − α2
1

)
cos2 φ

]n = 2

α2n
1

∫ 1

0

t−1/2(1 − t)−1/2

[1 − (1 − (α2/α1)2)t]n
dt.

From Gradshteyn and Ryzhik [15, p 995] we use the relation∫ 1

0
tβ−1(1 − t)γ−β−1(1 − tz)−α dt = B(β, γ − β)F (α, β; γ ; z),

and obtain the integral in terms of the ordinary hypergeometric function, thus

In = 2

α2n
1

B

(
1

2
,

1

2

)
F

(
n,

1

2
; 1; 1 −

(
α2

α1

)2)
= 2π

α2n
1

F

(
n,

1

2
; 1; 1 −

(
α2

α1

)2)
.

From Erdélyi et al [19, pp 64 and 69] it can be shown that the hypergeometric function
given above is quadratic and degenerate, respectively. Using the transformation on page 69,
F(a, b; c; x) = (1 − x)c−a−bF (c − a, c − b; c; x), we obtain two degenerate functions for
n = 3 and n = 6 given by

F(3, 1/2; 1; x) =
(

α1

α2

)5(
1 − x +

3x2

8

)
,

F (6, 1/2; 1; x) =
(

α1

α2

)11(
1 − 5x

2
+

15x2

4
− 25x3

8
+

175x4

128
− 63x5

256

)
,
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where x = 1− (α2/α1)
2. Expanding these results and substituting into the original interaction

energy equation we obtain

E = 2πηa

[
−A

(
1

4
J3,3 +

3

8
(J1,5 + J5,1)

)

+ B

(
63

256
(J1,11 + J11,1) +

35

256
(J3,9 + J9,3) +

30

256
(J5,7 + J7,5)

)]
,

where

Jm,n =
∫ ∞

0

dξ

αm
1 αn

2

. (B.1)

B.2. Evaluation of ξ integration

We now evaluate the ξ integration given by (B.1) using both Appell’s hypergeometric functions
and elliptic functions. The integral is of the form

Jm,n =
∫ ∞

0

dξ

[(a + εγ )2 + (ξ − zγ )2]p[(a − εγ )2 + (ξ − zγ )2]q
,

where we let m = 2p and n = 2q.

B.2.1. Appell’s hypergeometric functions. On making the substitution ξ −zγ = (a+εγ ) tan ω

we obtain

J2p,2q =
∫ π/2

ω1

(a + εγ ) sec2 ω dω

[(a + εγ )2 + (a + εγ )2 tan2 ω]p[(a − εγ )2 + (a + εγ )2 tan2 ω]q

= (a + εγ )1−2p

∫ π/2

ω1

(cos2 ω)p−1 cos2q ω dω

[(a − εγ )2 cos2 ω + (a + εγ )2 sin2 ω]q

= (a + εγ )1−2p−2q

∫ π/2

ω1

(cos2 ω)p+q−1 dω

[1 − (1 − v2) cos2 ω]q
,

where ω1 = tan−1(−zγ /(a + εγ )) and v = (a − εγ )/(a + εγ ). We now make the further
substitutions t = cos2 ω and t = t1u, thus

J2p,2q = (a + εγ )1−2p−2q

2

∫ t1

0
tp+q−1t−1/2(1 − t)−1/2(1 − (1 − v2)t)−q dt

=
[
(a + εγ )2 + z2

γ

]1/2−p−q

2

∫ 1

0
up+q−3/2(1 − t1u)−1/2[1 − (1 − v2)t1u]−q du,

where t1 = (a + εγ )2
/[

(a + εγ )2 + z2
γ

]
. From Bailey [16, p 77] we use the relation∫ 1

0
uα−1(1 − u)γ−α−1(1 − ux)−β1(1 − uy)−β2 du

= (α)(γ − α)

(γ )
F1(α;β1, β2; γ ; x, y),

and we write J2p,2q in terms of Appell’s hypergeometric function of two variables, thus

Jm,n =
[
(a + εγ )2 + z2

γ

]−M

2

(M)

(N)
F1

(
M; n

2
,

1

2
;N; (1 − v2)t1, t1

)
,

where M = (m + n − 1)/2 and N = (m + n + 1)/2.



3866 T A Hilder and J M Hill

B.2.2 Elliptic integrals. Alternatively we can evaluate the ξ integration using elliptic
integrals. We write the integral in the form

Ji,j =
∫ ∞

−zγ

dt

[α2 + t2]i[β2 + t2]j
√

(α2 + t2)(β2 + t2)

=
∫ ∞

0

dt

[α2 + t2]i[β2 + t2]j
√

(α2 + t2)(β2 + t2)

+
∫ zγ

0

dt

[α2 + t2]i[β2 + t2]j
√

(α2 + t2)(β2 + t2)

= Ki,j + K∗
i,j , (B.2)

where i = (m − 1)/2, j = (n − 1)/2 and we have made the substitution t = ξ − zγ and let
α = a + εγ , β = a − εγ . We now evaluate the integrals Ki,j with integration limits [0,∞]
and K∗

i,j with limits [0, zγ ]. Using Byrd and Friedman [17, p 62] we evaluate Ki,j , where

tn2u = (α/t)2, k2 = 1 − (β/α)2, g = 1/α.

Using elliptic identities we obtain a relation between du and dt , thus dt = −[(α2 + t2)

(β2 + t2)]1/2 du/α, which on substituting into the original integral obtains

Ki,j = g

α2(i+j)

∫ u1

0
sn2iu sd2ju du, (B.3)

where u1 = tn−1∞ or u1 = sn−1(1, k). Similarly using Byrd and Friedman [17, p 61] we
evaluate K∗

i,j , where

tn2u = (t/β)2, k2 = 1 − (β/α)2, g = 1/α.

Using the elliptic identities we again obtain a relation between du and dt, thus dt =
[(α2 + t2)(β2 + t2)]1/2 du/α, which on substituting into the original integral obtains

K∗
i,j = g

α2iβ2j

∫ u1

0
c d2iu cn2ju du, (B.4)

where here we have u1 = tn−1(zγ /β) and zγ � 0. From Byrd and Friedman [17, p 209
(351.51)] we have the transformation∫

sn2qu cn2ru

dn2su
du = 1

k2(q+r)

q∑
τ=0

r∑
µ=0

(−1)τ+µ+r (1 − k2)2(r−µ)q!r!

(q − τ)!τ !(r − µ)!µ!
I2(s−τ−µ),

which can be used with the elliptic identities to simplify the original elliptic integrals (B.3)
and (B.4), thus

Ki,j = g

(kα)2(i+j)

i+j∑
µ=0

(−1)µ(i + j)!

(i + j − µ)!µ!
I2(j−µ)

∣∣∣∣
u1

,

K∗
i,j = g

α2iβ2j k2(i+j)

i+j∑
µ=0

(1 − k2)i+j−µ (−1)µ+i+j (i + j)!

(i + j − µ)!µ!
I2(i−µ)

∣∣∣∣
u∗

1

,

where u1 = sn−1(1, k), u∗
1 = sn−1

(
zγ

/(
z2
γ + β2

)1/2
, k

)
and if x � 0 we note that Ix = G|x| =∫

dn|x|u du since nd−xu = dnxu, alternatively if x > 0 we have Ix = Hx = ∫
ndxu du. The
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value of G|x| and Hx can be evaluated using the recurrence formulae given on page 194 of
Byrd and Friedman [17], thus

Gx =
∫

dnxu du, G0 = u, G2 = E(ϕ, k),

G2m+2 = k2 dn2m−1u snu cnu + (1 − 2m)(1 − k2)G2m−2 + 2m(2 − k2)G2m

2m + 1
,

Hx =
∫

ndxu du, H0 = u, H2 = 1

(1 − k2)
[E(ϕ, k) − k2snu cdu],

H2m+2 = 2m(2 − k2)H2m + (1 − 2m)H2m−2 − k2snu cnu nd2m+1u

(2m + 1)(1 − k2)
.

Note that when zγ < 0 equation (B.2) becomes

J ∗
i,j =

∫ ∞

0

dt

[α2 + t2]i[β2 + t2]j
√

(α2 + t2)(β2 + t2)

−
∫ −zγ

0

dt

[α2 + t2]i[β2 + t2]j
√

(α2 + t2)(β2 + t2)

= Ki,j − K∗
i,j ,

and the elliptic integral method is still valid. The resulting interaction energy from the elliptic
integration becomes

E = 2πηa
∑

γ

[
−A

(
1

4
J1,1 +

3

8
(J0,2 + J2,0)

)

+ B

(
63

256
(J0,5 + J5,0) +

35

256
(J1,4 + J4,1) +

30

256
(J2,3 + J3,2)

)]
.
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